LEVELA NRL Report 8347 # Light Distribution Near the Line Focus in a HSURJA Laser Resonator WILLIAM H. CARTER Applicá Optics Branch Optical Sciences Division December 24, 1979 NAVAL RESEARCH LABORATORY Washington, D.C. Approved for public release; distribution unlimited. 80 1 16 069 | DEPORT DOCIMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | |--|--| | REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION N | 10. 3. RECIPIENT'S CATALOG NUMBER | | ALBORY NUMBER | | | NRL 8347 | TYPE OF REPORT & PERIOD COVERE | | A. TITLE (and Subtitle) | Interin report on a continuing | | LIGHT DISTRIBUTION NEAR THE LINE FOCUS IN | NRL Propiers | | A HSURIA LASER RESONATOR | E. PERFORMING ORG. REPORT NUMBER | | | | | THUTHOR(s) | B. CONTRACT OR GRANT NUMBER(a) | | 10 | MARCA Order - 3529 | | William H. Carter | The state of s | | 3. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASH
AREA & WORK UNIT NUMBERS | | • | NRL Problem N01-73 | | Naval Research Laboratory | 62301E ARPA 3529 | | Washington, DC 20375 | | | 11. CONTROLLING OFFICE NAME AND AGORESS | 2 4 Dec 279 | | Defense Advanced Research Projects Agency | Dec 19 19 113. NUMBER OF PAGES | | Strategic Technology Office | 12 | | 1400 Wilson Boulevard, Arlington, VA 22209 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling fice | | | | UNCLASSIFIED | | (12)13 | | | | 15. OECLASSIFICATION/DOWNGRADING | | 16. DISTRIBUTION STATEMENT (of this Report) | | | 19. CISTRIBUTION STATEMENT (or three reperty | 18) SBIE | | | | | Approved for public release, distribution unilmited. | The state of s | | / | 19/AD-EDAD 35 | | () | | | and the Black 20 II dillacen | t from Report) | | 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen | t from Report) | | 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen | t from Report) | | 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen | t from Report) | | 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differen | t from Report) | | 17. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to the supplementary notes | t from Report) | | | t from Report) | | | t from Report) | | 18. SUPPLEMENTARY NOTES | | | | | | 18. SUPPLEMENTARY NOTES | | | 18. SUPPLEMENTARY NOTES 19. KEY WOROS (Continue on reverse elde if necessary and identity by block num | | | 19. KEY WORDS (Continue on reverse elde if necessary and identity by block num Chemical lasers, Resonators, HSURIA, | | | 19. KEY WORDS (Continue on reverse elde if necessary and identity by block num Chemical lasers, Resonators, | | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory | nber) | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num | nber) | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num (The internsity distribution about the line focus inside a | nber) BURIA resonator is obtained | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num | nber) HSURIA resonator is obtained for high-energy iasers. | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num (The internsity distribution about the line focus inside a | nber) ther) HSURIA resonator is obtained | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block num Chemical lasers, Resonators, HSURIA, Diffraction theory 20. ABSTRACT (Continue on reverse elde if necessary and identify by block num (The internsity distribution about the line focus inside a | nber) HSURIA resonator is obtained for high-energy lasers. | DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE 1 5/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered) 251 950 mit ### CONTENTS | INTRODUCTION | 1 | |-------------------------------------|---| | FIELDS ALONG THE FOCAL LINE | 2 | | CONCLUSIONS AND RECOMMENDATIONS | 8 | | REFERENCES | 8 | | APPENDIX Derivation of Equation (9) | 9 | # LIGHT DISTRIBUTION NEAR THE LINE FOCUS IN A HSURIA LASER RESONATOR #### INTRODUCTION The half-spherical unstable resonator with internal axicon (ISURIA) has been developed for use with HF and DF lasers [1]. It appears to be particularly well suited to high-energy chemical lasers of this type chiefly because of its accommodation of a thin cylindrical gain medium, its high output coupling, and its relatively compact optical configuration. The HSURIA does present some serious difficulties, however. First, it appears highly doubtful that the HSURIA can contain a simple low-order optical mode which produces the preferred output beam with a Gaussian intensity profile [2], Second, it appears that for high-energy systems there is a gas-breakdown problem for operation at atmospheric pressure, It is this second problem which is addressed in the present report, The gas-breakdown problem results from the use of the conical reflector at the back of the annular gain region as shown in Fig. 1. The most basic HSURIA resonator as shown in the figure consists, from left to right, of a convex spherical front mirror, an axicon combined with an conical reflector (sometimes called a reflaxicon), the annular gain medium, and a second conical reflector which serves as the back mirror for the resonator. The annular gain medium results from constraints placed on the laser system by the present design of the gas-flow system for the HF and DF lasers and appears to be unavoidable, at least for the present. The reflaxicon and conical back reflector are used to accommodate this restriction on gain-medium geometry. It does not appear possible to replace the troublesome back reflector by a plane mirror. This results in high alignment sensitivity. In experiments with HSURIA resonators it is nearly impossible to align and hold such a mirror in place accurately enough to achieve a steady mode [3]. The conical back mirror shown in the figure solves this problem nicely but introduces a new problem, the gas-breakdown problem considered here. The conical back reflector removes the alignment sensitivity, but it brings the field inside of the resonator to a diffraction-limited line focus at which all of the energy is concentrated along a line a few centimeters long. Clearly for sufficiently high energy systems such a focusing of the field inside of the resonator will cause gas breakdown, prevent proper operation, and possibly damage laser components. Thus the output power will be severely limited, at least for lasers operated with the resonator containing a gas at atmospheric pressure. In this report a theoretical study is presented in which the fields associated with the line focus are derived, the maximum laser output beam energy is calculated for operation at atmospheric pressure, and possible solutions to this problem are discussed. Manuscript submitted June 20, 1979. where $$m = \sqrt{1 - p^2 - q^2}. (3)$$ By substituting Eq. (1) into (2), we have $$\psi(\vec{x}) = \frac{2\sqrt{I_0} \sigma}{\sqrt{2\pi} \lambda} \int \int \frac{1}{m} e^{ikxp} \cos(kmz) dp \ e^{-k^2 \sigma^2 q^2/2} e^{ikqy} dq. \tag{4}$$ We note that if we assume σ/λ is large, the kernel of the integral over q contributes principally only in the neighborhood where $q \approx 0$. This approximation will be justified later. Thus we can substitute the asymptotic approximation to Eq. (3), namely, $$m \sim \sqrt{1-p^2} + O(q^2),$$ (5) into Eq. (4) to obtain $$\psi(\vec{x}) \sim \frac{2\sqrt{I_0} \sigma}{\sqrt{2\pi} \lambda} \int_{-1}^{1} e^{-k^2 \sigma^2 q^2/2} e^{ikqy} dq \int_{-1}^{1} \frac{1}{\sqrt{1-p^2}} e^{ikxp} \cos(k\sqrt{1-p^2}z) dp, (6)$$ so that the integrals become independent. The first integral in Eq. (6) is tabulated (as in Ref. 8, p. 85, Eq. (710.0)). Evaluating the first integral, while making the transformation of variables $$p = \cos \theta, \sqrt{1 - p^2} = \sin \theta, dp = -\sin \theta d\theta, \tag{7}$$ we obtain $$\psi(x) \sim \frac{\sqrt{I_0}}{2\pi} e^{-y^2/2\sigma^2} \int_0^{\pi/2} 4\cos(kx\cos\theta)\cos(kz\sin\theta) d\theta.$$ (8) The integral in Eq. (8) is evaluated in the Appendix, which gives $$\int_{0}^{\pi/2} \cos(kx \cos\theta) \cos(kz \sin\theta) d\theta = \frac{\pi}{2} J_0(k\sqrt{x^2 + z^2}). \tag{9}$$ By substituting (9) into (8) we have $$\psi(\vec{x}) \sim \sqrt{I_0} e^{-y^2/2\sigma^2} J_0(k\sqrt{x^2+z^2}),$$ (10) which is the field amplitude over the focal region. (Equation (34) of Ref. 9 is a similar result found in a different manner.) Since it is the intensity of the field at focus which causes the gas-breakdown problem, we use Eq. (10) to calculate the intensity as $$I(\vec{x}) = |\psi(\vec{x})|^2 = I_0 e^{-y^2/\sigma^2} J_0^2 (k\sqrt{x^2 + z^2}). \tag{11}$$ We can now justify the asymptotic approximation made in Eq. (6) that $\sigma/\lambda \to \infty$. From Eq. (11) we see that σ/λ represents the length of the focal line in wavelengths, which for all practical situations is a large number (of the order of 10^5). We note that the intensity over the line focus is different from the well-known Airy disk pattern $$I(\vec{x}) = I_0 \left[\frac{2J_1(k\alpha r)}{k\alpha r} \right]^2, \tag{12}$$ which represents the intensity distribution about the point focus formed by a lens with an angular aperture α [10, section 8.5.2]. Comparison of these two functions in Fig. 2 for the optimum case (α = 1) indicates that the line focus is slightly sharper but otherwise apparently similar. However, a calculation of the energy contained within a cylinder of radius a centered on the focal line indicates that the line focus as given by Eq. (11) has unusual properties. Fig. 2 - Comparison of the radial dependence of two focal field intensities We obtain the energy contained over the line focus inside a cylinder of radius a centered on the y axis by simply integrating the intensity over the interior of the cylinder: $$\epsilon = \int_{0}^{a} \int_{0}^{2\pi} \int_{-\infty}^{\infty} I(\vec{x}) r \, dy d\theta dr. \tag{13}$$ By substituting Eq. (11) into (13) and carrying out the integration using a tabulated integral [11, section 11.3.34], we find that $$\epsilon = \pi^{3/2} \sigma a^2 I_0 \left[J_0^2(ka) + J_1^2(ka) \right]. \tag{14}$$ For larger ka, so that the radius of the cylinder is much larger than the wavelength of the radiation, we have $$\epsilon \sim 2 \sqrt{\pi} \frac{\sigma I_0}{k^2} ka,$$ (15) where we have used the asymptotic form for the Bessel functions [11, section 9.2.1]. From Eq. (15) we see that the energy increases linearly with radius a. Thus the energy is not restricted to the region near the focal line but extends away from it even into the far field. This is strikingly different from the conventional point focus. In Fig. 3 the energy contained within a circle of radius a about a conventional point focus as given by Born and Wolf [10, Fig. 8.13] is plotted along with the energy contained within a cylinder of radius a about the line focus as given by Eq. (14). We see that whereas more than 90% of all the energy in the focal plane is contained within the second dark ring of the Airy disk pattern, the energy associated with the line focus is not concentrated so much near the focal line. Every annular region of differential radius dr out perpendicular from the line focus contains the same amount of energy given from Eq. (15) by $$d\epsilon \sim 2 \sqrt{\pi} \frac{\sigma I_0}{k} dr. \tag{16}$$ So the energy is distributed over all space in this manner. The total energy over the surface of the reflector R is given by $$E_R = 2\pi a \int_{-\infty}^{\infty} I(\vec{x}) \, dy, \tag{17}$$ Fig. 3 — Comparison of the energy within a region of radius a from the center of focus for two fields #### **NRL REPORT 8347** where we neglect the angle the surface of R makes with respect to the y axis and assume that the reflector is parallel to a cylinder of radius a normal to the y axis. By substituting Eq. (11) into (17) and using a tabulated integral [12, Eq. (860.110], we find that $$E_R = 2(\pi)^{3/2} \sigma a \, I_0 \, J_0^2(ka). \tag{18}$$ By making use of the asymptotic approximation to $J_o(ka)$ for large ka [11, Eq. 9.2.1)], we have $$E_R \sim \frac{2\sigma\lambda}{\sqrt{\pi}} I_0 \cos^2(ka - \frac{\pi}{4}). \tag{19}$$ We may now calculate the total energy output from the laser. The energy given by Eq. (19) is that contained in the standing wave inside of the laser resonator at the surface of the back reflector. The traveling waves each carry half the peak energy in the interference pattern represented by Eq. (19). Thus the power carried by the traveling wave inside of the resonator is just $$p_i = c \frac{\sigma \lambda}{\sqrt{\pi}} I_0 , \qquad (20)$$ where c is the speed of light. If we let α represent the coupling parameter defined by $$\alpha \equiv \frac{p_o}{p_i} , \qquad (21)$$ where p_o is the power in the output beam and p_i is the power in the traveling wave inside the resonator, then from Eq. (20) the output power from the laser is just $$p_o = \alpha p_i = \frac{\alpha c \sigma \lambda I}{\sqrt{\pi}} 0 \ . \tag{22}$$ If we assume that reasonable values for the various parameters in Eq. (22) are $cl_0 = 10^9$ W/cm², $\sigma = 1$ cm, $\lambda = 3.8 \times 10^{-4}$ cm, and $\alpha = 0.75$, we find that for gas breakdown at 10^9 W/cm² light intensity the output beam of a DF laser operating at atmospheric pressure can carry no more than 160 kW of power*. ^{*}The breakdown threshold for 10.6-\(\mu\)m radiation in air is of the order of 10⁹ W/cm², as given in Ref. 13. For lack of data we have assumed that this result is also approximately correct for breakdown over the DF and HF laser wavelengths. #### CONCLUSIONS AND RECOMMENDATIONS The HSURIA resonator as shown in Fig. 1 appears to be unsuitable for high-power lasers unless gas breakdown can be prevented somehow. The simplest way to solve the problem presently appears to be operation of the laser in vacuum. Where this is not practical, the resonator will have to be modified to eliminate the conical back reflector. Several modified resonators have been proposed which would do this. For example, one could replace the back reflector by a second reflaxicon and could add a simple back reflector or corner cube to return the beam back into the reflaxicon. Instead of a ding the simple back reflector, one could bring the beam from the reflaxicon around into the other reflaxicon to form a ring resonator. Alignment of two reflaxicons, however, is a severe problem, but is is not clear that it can be avoided. #### REFERENCES - 1. P.B. Mumola, H.J. Robertson, G.N. Steinberg, J.L. Kreuzer, and A.W. McCullough, Appl. Opt. 17, 936-943 (1978). - 2. P.B. Mumola, Perkin Elmer Corp., private communication, Feb. 9, 1979. - 3. W. Plummer, Airforce Weapons Laboratory, private communication, Feb. 14, 1978. 1 now appears that this result may not be conclusive. - 4. C.J Bouwkamp, Rept. Progr. Phys. 17, 41-100 (1954). - 5. J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1968. - 6. J.R. Shewell and E. Wolf, J. Opt. Soc. Am. 58, 1596-1603 (1968). - 7. A. Baños, Jr., Dipole Radiation in the Presence of a Conducting Half-Space, Pergamon, New York, 1966, Eq. (2.19). - 8. G.A. Campbell and R.M. Foster, Fourier Integrals for Practical Applications, Van Nostrand, New York, 1948. - 9. L.W. Casperson, J. Opt. Soc. Am. 63, 25-29 (1973). - 10. M. Born and E. Wolf, Principles of Optics, 5th edition, Pergamon, New York, 1975. - 11. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, U.S. Govt. Print. Off., Washington, D.C. 1964. - 12. H.B. Dwight, Tables of Integrals, Macmillan, New York, 1961. - 13. C.H. Chan, C.D. Moody, and W.B. McKnight, J. Appl. Phys. 44, 1179-1188 (1973), Fig. 9. #### **Appendix** ## **DERIVATION OF EQUATION (9)** In this appendix a proof is derived for the integral formula $$\int_{0}^{\pi/2} \cos(kx \cos\theta) \cos(kz \sin\theta) d\theta = \frac{\pi}{2} J_0(k\sqrt{x^2 + z^2}). \tag{A1}$$ We expand the two cosine factors in the kernel using the formulas* $$\cos(dx \cos\theta) = J_0(kx) + 2 \sum_{n=1}^{\infty} (-1)^n J_{2n}(kx) \cos(2n\theta)$$ (A2) and $$\cos(kz\sin\theta) = J_0(kz) + 2\sum_{\ell=1}^{\infty} J_{2\ell}(kz)\cos(2\ell\theta)$$ (A3) and interchange the order of summation and integration to obtain an infinite series of terms. $$\int_{0}^{\pi/2} J_0(kx) J_0(kz) d\theta = \frac{\pi}{2} J_0(kx) J_0(kz), \tag{A4}$$ ^{*}M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1964, Eqs. (9.1.41) and (9.1.44). in which the integration is trivial. The higher order terms $(n \ge 1, \le 1)$ are of the form $$\begin{aligned} 4(-1)^n \ J_{2n}(kx) \ J_{2\ell}(kz) & \int_0^{\pi/2} \cos{(2n\theta)} \cos{(2\ell\theta)} \, d\theta = 0, & \text{if } n \neq \ell, \\ & = (-1)^n \pi J_{2n}(kx) \ J_{2n}(kz), & \text{if } n = \ell, \end{aligned} \tag{A5}$$ in which the integral is easily evaluated by making the change of variables $\theta' = 2\theta$ and using the orthogonality relation* $$\int_{0}^{\pi} \cos(m\theta') \cos(n\theta') d\theta' = 0, \text{ if } m \neq n$$ $$= \frac{\pi}{2}, \text{ if } m = n.$$ (A6) Thus from Eqs. (A4) and (A5) we have $$\int_{0}^{\pi/2} \cos(kx \cos\theta) \cos(kz \sin\theta) d\theta = \frac{\pi}{2} \left[J_{0}(kx) J_{0}(kz) + 2 \sum_{n=1}^{\infty} (-1)^{n} J_{2n}(kx) J_{2n}(kz) \right].$$ (A7) The right-hand side of Eq. (7A) has the form of the right-hand side of the "summation theorem": $$J_0(k\sqrt{x^2+z^2}) = J_0(kx) \ J_0(kz) + 2 \sum_{n=1}^{\infty} (-1)^n \ J_{2n}(kx) \ J_{2n}(kz). \tag{A8}$$ By substituting Eq. (A8) into (A7), we obtain (A1), and the proof is complete. ^{*}H.B. Dwight, Tables of Integrals, McMillan, New York, 1961, Eq. (858.517). †I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, Academic Press, New York, 1965, Eq. (8.531-1), in which we set φ = π/2, p = kx, r = kz, and m = 1.